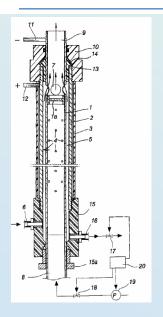


Towards Safe, Reliable and Sustainable Services

The development of an electrochemical decentral household treatment unit.

Roemer Goossensen NOAH Water Solutions

Golem, 9th November 2023

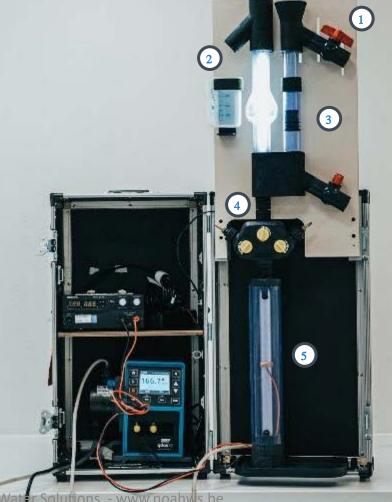


Electrochemical treatment of wastewater

- Introduction of Noah Water solutions
- Summarize 6 year R&D in 14 minutes
- Results and outlook

NOAH Water Solutions: a R&D company

Research:

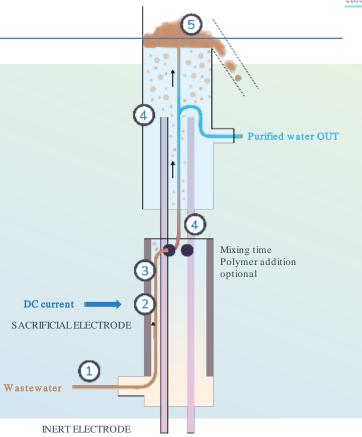

- Own patents WO2022/269487; BE2021/5484
- Connected to the University of Ghent and Antwerp
- PhD research & articles

<u>Development</u>

- Labreactor to serve international scientific community
- Focus on small industrial installations (0,1-20m³/h)
- Focus on sanitation (0,1-3m3/h)

Lab reactor

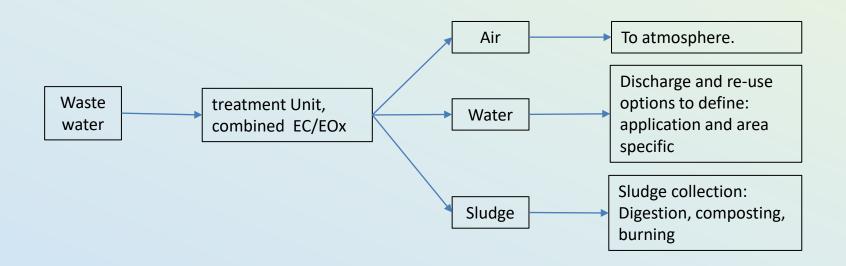
- Exit effluent Height regulation sludge removal
- Exit sludge
- Flocculation tower
- Static mixer
- Electrochemical cell



r Solutions - www.noahws.be

Working principle EC-F

- 1. Wastewater is pumped through the gap between the two coaxial electrodes.
- 2. An iron or aluminium sacrificial electrode releases metal ions which speciate depending on pH.
- 3. The produced metal ions react with water producing metal hydroxides, which encapsulate, adsorb & co-precipitation colloidal particles and pollutants.
- 4. The inner inert electrode produces very fine hydrogen bubbles which cause a flotation effect.
- 5. The iron- aluminium hydroxide floc, is floating by produced H2. There is no mechanical separation only gravitational.



- Drawbacks of biological systems in grid-less applications:
 - Excess sludge production (handling issue)
 - Under-/over-/seasonal load affects the efficiency
 - aeration energy (esp. onboard, warm countries)
 - Size & weight
 - Emissions (CH4, N2O) septic tanks

This is NOT a disqualification of biological systems!

Concept of system

- Focus of development: must comply with land-based and EU Inland Waterways discharge limits

The challenge:

- Discharge limits & certifications, differ across EU
- Low capex / opex
- Dry sludge
- Treat-on-demand
- Desinfection
- Re-use of water (closing the loop)
- And lowest GHG emissions.....

Can EC + Eox be the solution?

- considering different sources, different load – same discharge limits....

Type of wastewater	source	locations:	COD mg/l	1 m3 equals to:
High strength	vacuum toilets, some handwash	trains, some boats, some households	>9000	2000 flushes from vacuum with some handwashing water @ 0,5 l/flush
medium strength	flush toilets, some handwash	boats, construction sites, some households, lodges	<2500 > 1500	125 flushes, total water use 8 liters/flush, handwashing
low strength (domestic wastewater)	toilets + grey water (+kitchen)	households, hotels, some boats	<500 >300	highly diluted domestic wastewater, 110 l person/day

Can EC + Eox meet the standards?

- and considering different effluent standards.....

High seas		Inland waterways			Domestic wastewater		SYSTEM TARGETS			
IMO EU		EU	NL recreational craft EU Inland Waterways		EU					
		MEPC.227 (64)	MEPC 227(64) Par. 4.2	2012/49/EU	BSK2019/201145	ES-TRIN (H 18)		directive 91/271/EEG		
	unit	since	2016	Since 2013	since 2019			in mg/L	reduction %	
BOD ⁵	[mg/l]	25 Q _i /Q _e	25 Q _i /Q _e	20 mg/l ¹ – 25mg/l ²		20 mg/l ¹ – 25mg/l ²	25mg/l²	25 mg/L	70-90%	25mg/l²
COD	[mg/l]	125 Q _i /Q _e	125 Q _i /Q _e	100 mg/l ¹ – 125 mg/l ²	NO treatment	100 mg/l ¹ – 125 mg/l ²	125 mg/l ¹ – 150 mg/l ²	125 mg/L	75%	125 mg/l ¹ – 150 mg/l ²
TSS	[mg/l]	35 Q _i /Q _e	35 Q _i /Q _e					35 mg/L (facultative norm)	70% (2000-10000 ie) (facultative norm)	< 50

effluent standards are more or less the same, certification different per group/countrylevel).

- Desinfection

coliforms	[cfu/100 ml]	100 Q _i /Q _e	100 Q _i /Q _e	int. Enterok 330kve/100 ml and e.coli 900kve/ml - (90-percentiel)	Log 6 reduction (99,9999%)	Sta 10 wa
-----------	-----------------	------------------------------------	---------------------------------------	--	-------------------------------	-----------------

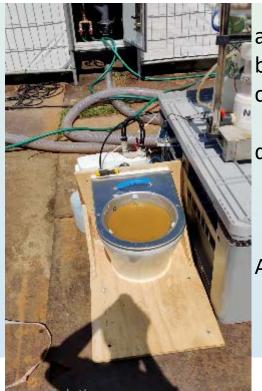
Starting values always > 10°CFU/100 ml toilet water.....

And some nice-to-have-but-not-so-challenging

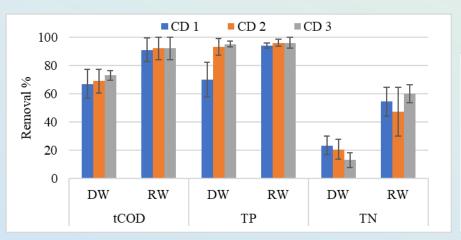
residual chlorine	[mg/l]	0,5	0,5	1	-	0,01	0	no added chlorine
рН	[-]	6,0 - 8,5	6,0 - 8,5	-	-	6,0 - 9,0		6-9
N _{tot}	[mg/l]	20 Q _i /Q _e	20 Q _i /Q _e	-	-	-		
P _{tot}	[mg/l]		1 Q _i /Q _e	-				>95% (<1,0 mg/L)

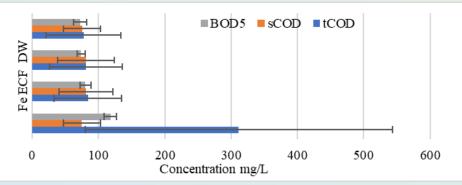
Parameter	influent
	mg/L
COD	4739
sCOD	178
TN	83,5
TP	25,0

Influent: domestic waste water + Toilet Paper + cow feces >1000 NTU


effluent Process	Removal
mg/L	%
182	96
141	21
25,6	68,7
0,28	99

Energy consumption of 5,1 kWh/m³
Effluent step 2: Ti
4,8 NTU




- a. vacuum toilets 0,5 l/turn
- b. shredder pump
- c. electro-coagulation followed by
- d. electro-oxidation

All festivals are different....

tCOD, TP and TN Removal performances of Al EC-F treatment of DW and RW MWW at applied CD

Concentration of tCOD, sCOD, BOD5 before and After ECF

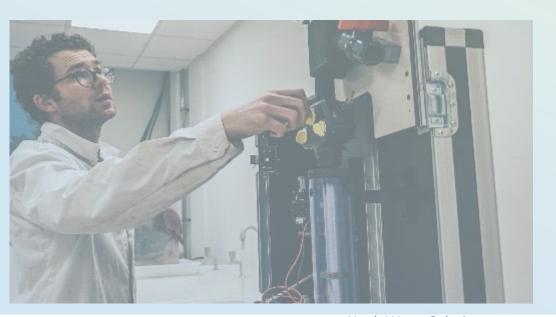
Results

- ✓ Discharge limits EU Directive
- ✓ Discharge limits Inland Waterways
 - on domestic low strength
- √ total disinfection in two steps
- High strength water with 3rd step
- N removal needs more attention

From concept to realization 2023

Construction site sanitation unit.
Step towards sustainable, cost-effective permanent on-site treatment

Food for thought:


- Treatment at source eases process
- 'Flush and go' concept energy demand.
- Avoid CH_{4,} and NH₃ production by immediate treatment

Sludge has high biogass potential – valorisation?

- Reach discharge limit but always necessary? (place dependent? nutrient rich water)
 - Total disinfection paves way for reuse (toilet flush, irrigation,)

Thank you for your attention

r.goossensen@noahws.be +31 6 1521 6062 d.parmentier@noahws.be

www.noahus.be

References

- 1) N. Hassan, et al., Electrocoagulation flotation as a municipal wastewater (pre-)treatment technology: Effect of weather conditions and current density, *J. Environ. Manage.*, 345 (2023) 118906
- Ontwikkeling van een elektrochemische sanitatie unit, (development of an electrochemical sanitation unit) Sophie van Wambeke, Bachelor thesis, 2021-2022,
- Testreports, analysis, technical development by Noah Water Solutions, Dr. D. Parmentier, R.Goossensen.