

Your Speaker: Edmund Riehle (CEO FAST GmbH)

Contact: e.riehle@fastgmbh.de

Distributed Fiber Optic Sensing

DAS and DTS Interrogators

DAS and DTS pipeline applications

DTS (Measurement of Temperature & Temperature Variation)

DAS (Monitoring of Acoustic Events & Temperature Variation)

Why use Fiber Optic Distributed Sensing

Acoustic Sensing through the pipe wall

The **large diameter pipes** conduct sound very poorly, especially small leaks. This poses a problem for point acoustic sensors (acoustic loggers), as the access points are many hundreds of meters apart.

Insulated Pipes

 Chilled water and District Heating systems insulated pipes poses a challenge to point acoustic sensors

Excursion: sound propagation

DN 600 Poor propagation

Big leak Low frequencies

High pressure Big noise level

DN 50 Good propagation

Small leak High frequencies

Low pressure Small noise level

20000

Case study: DTS for District Cooling Pipes

Challenges:

- Leak location is the main challenge.
- Leaks could remain unlocated for a long time, as much of the pipework is hidden in wall cavities or underground.
- Delay in finding leaks can cause damage to structures.
- Acoustic point sensors and other acoustic technologies are difficult to implement due to high background noise and insulation.

Solution:

High ΔT and insulation make a perfect case for DTS.

Case Study: Emicool DCP

Onsite photos of FOC along pipes

Confidential 7

Case Study: Emicool DCP

Map View of AP Sensing DTS Software – Smart Vision

Internal leak monitoring using DAS

• DN80 PVC pipe, approx. 40m length

Pump to obtain pressure

approx. 32m

Insertion Sleeve

Manual Valve to simulate leakage

Waterfall Diagram DAS - Inline acoustic

- Waterfall diagram displays measured intensity (color coded) over fiber length and time
- Waterfall diagram clearly shows time and location of the leak
- Test was carried out on DN80 ductile iron pipeline at 2.0 bar

Frequency and amplitude – at 4.5 bar

Spectrogram

- Valve opened for 70s (13:59:56 14:01:06)
- Valve operation and leak are clearly visible

Frequency and amplitude – at 2.0 bar

Spectrogram

- Valve opened for 39s (14:12:16 14:12:55)
- Valve operation and leak are clearly visible.

5s averaged spectrum of leakage without "background noise floor"

- pressure increase from 2.0 bar to 4.5 bar results in higher amplitudes
- Additional peak at 1,000 Hz due to pressure increase

Installation of FOC inside the pipeline

Parachute system with acoustic and optical (camera) sensor

Flow velocity check

folding mechanism of the parachute

Parachute system applied in Nürnberg

Installation on a DN400 ductile pipe through "free-flow" hydrant including disinfection methodology

Parachute - insertion and disinfection

Conclusions

- DTS and DAS complement the existing set of point-based leak detection and location tools for challenging applications.
- Distributed Sensing allows close proximity to the leak location and high sensitivity
- Internal and External cable installation create flexibility for the cost-effective installation of new and existing pipes.
- The sensing of Acoustic and Thermal leak signatures enables the selection of effective detection and location sensor (DAS or DTS).
- Internal distributed sensing cable addresses the main challenge for large diameter pipes, as they conduct sound very poorly, and their access points are many hundreds of meters apart.